
CHAPTER TWELVE

KINETIC THEORY

12.1 INTRODUCTION

Boyle discovered the law named after him in 1661. Boyle,
Newton and several others tried to explain the behaviour of
gases by considering that gases are made up of tiny atomic
particles. The actual atomic theory got established more than
150 years later. Kinetic theory explains the behaviour of gases
based on the idea that the gas  consists of rapidly moving
atoms or molecules. This is possible as the inter-atomic forces,
which are short range forces that are important for solids
and liquids,  can be neglected for gases. The kinetic theory
was developed in the nineteenth century by Maxwell,
Boltzmann and others. It has been remarkably successful. It
gives a molecular interpretation of  pressure and temperature
of a gas, and is consistent with gas laws and Avogadro’s
hypothesis. It correctly explains specific heat capacities of
many gases. It also relates measurable properties of gases
such as viscosity, conduction and diffusion with molecular
parameters, yielding estimates of molecular sizes and masses.
This chapter gives an introduction to kinetic theory.

12.2 MOLECULAR NATURE OF MATTER

Richard Feynman, one of the great physicists of 20th century
considers the discovery that “Matter is made up of atoms” to
be a very significant one. Humanity may suffer annihilation
(due to nuclear catastrophe) or extinction (due to
environmental disasters) if we do not act wisely. If that
happens, and all of scientific knowledge were to be destroyed
then Feynman would like the ‘Atomic Hypothesis’ to be
communicated to the next generation of creatures in the
universe. Atomic Hypothesis: All things are made of atoms -
little particles that move around in perpetual motion,
attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another.

Speculation that matter may not be continuous, existed in
many places and cultures. Kanada in India and Democritus
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in Greece had suggested that matter may consist
of indivisible constituents. The scientific ‘Atomic
Theory’  is usually credited to John Dalton. He
proposed the atomic  theory to explain the laws
of definite and multiple proportions obeyed by
elements when they combine into compounds.
The first law says that any given compound has,
a fixed proportion by mass of its constituents.
The second law says that when two elements
form more than one compound, for a fixed mass
of one element, the masses of the other elements
are in ratio of small integers.

To explain the laws Dalton suggested, about
200 years ago,  that the smallest constituents
of an element are atoms. Atoms of one element
are identical but differ from those of other
elements.  A small number of atoms of each
element combine to form a molecule of the
compound. Gay Lussac’s law, also given in early
19th century, states:  When gases combine
chemically to yield another gas, their volumes
are in the ratios of small integers.  Avogadro’s
law  (or hypothesis) says: Equal volumes of all
gases at equal temperature and pressure have
the same number of molecules.  Avogadro’s law,
when combined with Dalton’s theory explains
Gay  Lussac’s law.  Since the elements are often
in the form of molecules, Dalton’s atomic theory
can also be referred to as the molecular theory

of matter. The theory is now well accepted by
scientists. However even at the end of the
nineteenth century there were famous scientists
who did not believe in atomic theory !

From many observations, in recent times we
now know that  molecules (made up of one or
more atoms) constitute matter. Electron
microscopes  and scanning tunnelling
microscopes enable us to even see them. The
size of an atom is about an angstrom (10 -10   m).
In solids, which are tightly packed, atoms are
spaced about a few  angstroms (2 Å) apart. In
liquids the separation between atoms is also
about the same.  In liquids the atoms  are not
as rigidly fixed as in solids, and can move
around. This enables a liquid to flow.  In gases
the interatomic distances are in tens of
angstroms.  The average distance a molecule
can travel without colliding is called the  mean
free path. The mean free path, in gases, is of
the order of thousands of angstroms. The atoms
are much freer in gases and can travel long
distances without colliding. If they are not
enclosed, gases disperse away. In solids and
liquids the closeness makes the interatomic force
important. The force has a long range attraction
and a short range repulsion. The atoms attract
when they are at a few angstroms but repel when
they come closer. The static appearance of a gas

Atomic Hypothesis in Ancient India and Greece

Though John Dalton is credited with the introduction of atomic viewpoint in modern science, scholars in
ancient India and Greece conjectured long before the existence of atoms and molecules.  In the Vaiseshika
school of thought in India founded by Kanada (Sixth century B.C.) the atomic picture was developed in
considerable detail. Atoms were thought to be eternal, indivisible, infinitesimal and ultimate parts of matter.
It was argued that if matter could be subdivided without an end, there would be no difference between a
mustard seed and the Meru mountain.  The four kinds of atoms (Paramanu — Sanskrit word for the
smallest particle) postulated were Bhoomi (Earth), Ap (water), Tejas (fire) and Vayu (air) that have characteristic
mass and other attributes, were propounded. Akasa (space) was thought to have no atomic structure and
was continuous and inert. Atoms combine to form different molecules (e.g. two atoms combine to form a
diatomic molecule dvyanuka, three atoms form a tryanuka or a triatomic molecule), their properties depending
upon the nature and ratio of the constituent atoms.  The size of the atoms was also estimated, by conjecture
or by methods that are not known to us.  The estimates vary. In Lalitavistara, a famous biography of the
Buddha written mainly in the second century B.C., the estimate is close to the modern estimate of atomic
size, of the order of 10 –10 m.
   In ancient Greece, Democritus (Fourth century B.C.) is best known for his atomic hypothesis. The
word ‘atom’ means ‘indivisible’ in Greek. According to him, atoms differ from each other physically, in
shape, size and other properties and this resulted in the different properties of the substances formed
by their combination.  The atoms of water were smooth and round and unable to ‘hook’ on to each
other, which is why liquid /water flows easily.   The atoms of earth were rough and jagged, so they held
together to form hard substances.  The atoms of fire were thorny which is why it caused painful burns.
These fascinating ideas, despite their ingenuity, could not evolve much further, perhaps because they
were intuitive conjectures and speculations not tested and modified by quantitative experiments - the
hallmark of modern science.
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is misleading. The gas is full of activity and the
equilibrium is a dynamic one. In dynamic
equilibrium, molecules collide and change their
speeds during the collision. Only the average
properties are constant.

Atomic theory is not the end of our quest, but
the beginning. We now know that atoms are not
indivisible or elementary. They consist of a
nucleus and electrons. The nucleus itself is made
up of protons and neutrons. The protons and
neutrons are again made up of quarks. Even
quarks may not be the end of the story. There
may be string like elementary entities. Nature
always has surprises for us, but the search for
truth is often enjoyable and the discoveries
beautiful. In this chapter, we shall limit ourselves
to understanding the behaviour of gases (and a
little bit of solids), as a collection of moving
molecules in incessant motion.

12.3   BEHAVIOUR OF GASES

Properties of gases are easier to understand than
those of solids and liquids. This is mainly
because in a gas, molecules are far from each
other and their mutual interactions are
negligible except when two molecules collide.
Gases at low pressures and high temperatures
much above that at which they liquefy (or
solidify) approximately satisfy a simple relation
between their pressure, temperature and volume
given by (see Chapter 10)

PV = KT (12.1)
for a given sample of the gas. Here T is the
temperature in kelvin or (absolute)  scale. K is  a
constant for the given sample but varies with
the volume of the gas. If we now  bring in  the
idea of atoms or molecules, then K is proportional
to the number of molecules, (say) N in the
sample. We can write K = N k . Observation tells
us that this k is same for all gases. It is called
Boltzmann constant and is denoted by k

B
.

As 1 1 2 2

1 1 2 2

P V P V

N T N T
=  = constant = kB (12.2)

if P, V and T are same, then N is also same for all
gases. This is Avogadro’s hypothesis, that  the
number of molecules per unit volume is
the same for all gases at a fixed temperature and
pressure. The number in 22.4 litres of any gas

is 6.02 × 1023. This is known as Avogadro number
and is denoted by NA. The mass of 22.4 litres of
any gas is equal to its molecular weight in grams
at S.T.P (standard temperature 273 K and
pressure 1 atm). This amount of substance is
called a mole (see Chapter 1 for a more precise
definition). Avogadro had guessed the equality of
numbers in equal volumes of gas at a fixed
temperature and pressure from chemical
reactions.  Kinetic  theory justifies this hypothesis.

The perfect gas equation can be written as

PV = µ RT (12.3)

where  µ   is the number of moles and R  = NA
kB is a universal constant. The temperature T is
absolute temperature.  Choosing kelvin scale for
absolute temperature, R = 8.314 J mol–1K–1.
Here

0 A

M N

M N
µ = = (12.4)

where M is the mass of the gas containing N
molecules, M0 is the molar mass and NA the
Avogadro’s number. Using  Eqs. (12.4) and (12.3)
can also be written as

PV = kB NT or P = kB nT

P (atm)
Fig.12.1 Real gases approach ideal gas behaviour at

low pressures and high temperatures.

where  n is the number density, i.e. number of
molecules per unit volume. kB is  the Boltzmann
constant introduced above. Its value in SI units
is 1.38 × 10–23 J K–1.

Another useful form of Eq. (12.3) is

0

RT
P

M

ρ= (12.5)
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⊳

where ρ is the mass density of the gas.
A gas that satisfies Eq. (12.3) exactly at all

pressures and temperatures is defined to be an
ideal gas. An ideal gas is a simple theoretical
model of a gas. No real gas is truly ideal.
Fig. 12.1 shows departures from ideal gas
behaviour for a real gas at three different
temperatures. Notice that all curves approach
the ideal gas behaviour for low  pressures and
high temperatures.

At low pressures or high temperatures the
molecules are far apart and molecular
interactions are negligible. Without interactions
the gas behaves like an ideal one.

If we fix µ and T in Eq. (12.3), we get

PV = constant (12.6)
i.e., keeping temperature constant, pressure of
a given mass of gas varies inversely with volume.
This is the famous Boyle’s law. Fig. 12.2  shows
comparison between experimental P-V curves
and the theoretical curves predicted by Boyle’s
law. Once again you see that the  agreement is
good at high temperatures and  low pressures.
Next, if you fix P, Eq. (12.1) shows that V ∝  T i.e.,
for a fixed pressure, the volume of a gas is
proportional to its absolute temperature T
(Charles’ law). See Fig. 12.3.

Fig.12.2 Experimental P-V curves (solid lines) for
steam at three temperatures compared with
Boyle’s law (dotted lines). P is in units of 22

atm and V in units of 0.09 litres.

Finally, consider a mixture of non-interacting
ideal  gases: µ

1
  moles of gas 1, µ

2
 moles of gas 2,

etc. in a vessel of volume V at temperature T and
pressure P. It is then found that the equation  of
state of the mixture is :

PV = ( µ1 + µ2 +…  ) RT (12.7)

i.e. 1 2 ...
RT RT

P
V V

µ µ= + + (12.8)

= P1 + P2 + … (12.9)

Clearly P1 =    µ1 R T/V   is the pressure that
gas 1 would  exert at the same conditions of
volume and  temperature if no other gases were
present. This is called the partial pressure of the
gas. Thus, the total pressure of a mixture of ideal
gases is the sum of partial pressures. This is
Dalton’s law of partial pressures.

Fig. 12.3 Experimental T-V curves (solid lines) for CO
2

at three pressures compared with Charles’
law (dotted lines). T is in units of 300 K and

V in units of 0.13 litres.

We next consider some examples which give
us information about the volume occupied by
the molecules and the volume of a single
molecule.

Example 12.1 The density of water is  1000
kg m–3. The density of water vapour at 100 °C
and 1 atm pressure is 0.6 kg m–3. The
volume of a molecule multiplied by the total
number gives ,what is called, molecular
volume. Estimate the ratio (or fraction) of
the molecular volume  to the total volume
occupied by the water vapour under the
above conditions of temperature and
pressure.
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Answer For  a given mass of water molecules,
the density is less if volume is large. So the
volume of the vapour is  1000/0.6  = 1/(6 × 10 -4 )
times larger.  If densities of bulk water and water
molecules are same, then the fraction of
molecular volume to the total volume in liquid
state is 1. As volume in vapour state has
increased, the fractional volume is less by the
same amount, i.e.  6×10-4.  ⊳

Example 12.2   Estimate the volume of a
water molecule using the data in Example
12.1.

Answer In the liquid (or solid) phase, the
molecules of water are quite closely packed. The
density of water molecule may therefore, be
regarded as roughly equal to the density of bulk
water = 1000 kg m–3. To estimate the volume of
a water molecule, we need to know the mass of
a single water molecule. We know that 1 mole
of water has a mass approximately equal to

(2 + 16)g  = 18 g  =  0.018 kg.
Since 1 mole   contains  about   6 × 1023

molecules   (Avogadro’s  number),   the mass of
a molecule of water is  (0.018)/(6 × 1023) kg  =
3 × 10–26 kg. Therefore, a rough estimate of the
volume of a water  molecule is as follows :

Volume of a water molecule
= (3 × 10–26 kg)/ (1000 kg m–3)
= 3 × 10–29 m3

= (4/3) π  (Radius)3

Hence, Radius ≈ 2 ×10-10  m = 2 Å ⊳

Example 12.3   What is the average
distance between atoms (interatomic
distance) in water? Use the data given in
Examples 12.1 and 12.2.

Answer :   A given mass of water in vapour state
has 1.67×103 times the volume of the same mass
of water in liquid state (Ex. 12.1). This is also
the increase in the amount of volume available
for each molecule of water. When volume
increases by 103 times the radius increases by
V1/3 or 10 times, i.e., 10 × 2 Å  = 20 Å. So the
average distance is 2 × 20 = 40  Å.     ⊳

Example 12.4 A vessel contains two non-
reactive gases : neon (monatomic) and
oxygen (diatomic). The ratio of their partial
pressures is 3:2. Estimate the ratio of  (i)

number of molecules and (ii) mass density
of neon and oxygen in the vessel. Atomic
mass of Ne = 20.2 u, molecular mass of O2
= 32.0 u.

Answer Partial pressure of a gas in a mixture is
the pressure it would have for the same volume
and temperature if it alone occupied the vessel.
(The total pressure of a mixture of non-reactive
gases is the sum of partial pressures due to its
constituent gases.) Each gas (assumed ideal)
obeys the gas law. Since V and T are common to
the two gases,  we  have  P1V = µ 1 RT and P2V =
µ2 RT, i.e. (P1/P2) = (µ1 / µ2). Here 1 and 2 refer
to neon and oxygen respectively. Since (P1/P2) =
(3/2) (given), (µ1/ µ2) = 3/2.
(i) By definition µ1 = (N1/NA ) and µ2 = (N2/NA)

where N1 and N2 are the number of molecules
of 1 and 2, and NA is the Avogadro’s number.
Therefore, (N1/N2) = (µ1 / µ2)  = 3/2.

(ii) We can also write µ1 = (m1/M1) and µ2 =
(m2/M2) where m1 and m2 are the masses of
1 and 2; and M1 and M2 are their molecular
masses. (Both m1 and M1; as well as m2 and
M2 should be expressed in the same units).
If ρ1 and ρ2  are the mass densities of 1 and
2 respectively,  we have

ρ

ρ

µ

µ

1

2

1

2

1

2

1

2

1

2

= = = ×






m V

m V

m

m

M

M

/

/

3 20.2
0.947

2 32.0
= × =

  ⊳

12.4 KINETIC THEORY OF AN IDEAL GAS

Kinetic theory of gases is based on the molecular
picture of matter. A given amount of gas is a
collection of a large number of molecules
(typically of the order of Avogadro’s number) that
are in incessant random motion. At ordinary
pressure and temperature, the average distance
between molecules is a factor of 10 or more than
the typical size of a molecule (2 Å). Thus,
interaction between molecules is negligible and
we can assume that they move freely in straight
lines according to Newton’s first law. However,
occasionally, they come close to each other,
experience intermolecular forces and their
velocities change.  These interactions are called
collisions. The molecules collide incessantly
against each other or with the walls and change

⊳
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their velocities.  The collisions are considered to
be elastic. We can derive an expression for the
pressure of a gas based on the kinetic theory.

We begin with the idea that molecules of a
gas are in incessant random motion, colliding
against one another and with the walls of the
container. All collisions between molecules
among themselves or between molecules and the
walls are elastic. This implies that  total kinetic
energy is conserved. The total momentum is
conserved as usual.

12.4.1 Pressure of an Ideal Gas

Consider a gas enclosed in a cube of side l. Take
the axes to be parallel to the sides of the cube,
as shown in Fig. 12.4.  A molecule with velocity
(v

x
, v

y
, v

z
 ) hits the planar wall parallel to yz-

plane of area A (= l2). Since the collision is elastic,
the molecule rebounds with the same velocity;
its y and z components of velocity do not change
in the collision but the x-component reverses
sign. That is, the velocity after collision is
(-v

x
, v

y
, v

z
 ) . The change in momentum of the

molecule is:  –mv
x
 – (mv

x
) = – 2mv

x 
. By the

principle of conservation of momentum, the
momentum imparted to the wall in the collision
= 2mv

x
 .

the wall. Thus, the number of molecules with
velocity (vx, vy, vz )  hitting the wall in time ∆t is
½A v

x  ∆t n, where n is the number of molecules
per unit volume. The total momentum
transferred to the wall by these molecules in
time ∆t  is :

Q = (2mv
x
) (½ n A v

x
 ∆t ) (12.10)

The force on the wall is the rate of momentum
transfer Q/∆t  and pressure is force per unit
area :

P =  Q /(A ∆t)  =  n m v
x
2 (12.11)

Actually, all molecules in a gas do not have
the same velocity; there is a distribution in
velocities.  The  above equation, therefore, stands
for pressure due to the group of molecules with
speed v

x
  in  the x-direction and n stands for the

number density of that group of molecules. The
total  pressure is obtained by summing over the
contribution due to all groups:

P = n m 2
xv (12.12)

where 2
xv  is the average of  v

x
2  .  Now the gas

is isotropic, i.e. there is no preferred direction
of velocity of the molecules in the vessel.
Therefore, by symmetry,

2
xv  = 2

yv  = 2
zv

= (1/3) [ 2
xv  +  2

yv  + 2
zv ] = (1/3) 2v (12.13)

where v is the speed and 2v   denotes the mean

of the squared speed. Thus

P = (1/3) n m 2v (12.14)

Some remarks on this derivation. First,
though we choose the container to be a cube,
the shape of the vessel really is immaterial. For
a vessel of arbitrary shape, we can always choose
a small infinitesimal (planar) area and carry
through the steps above. Notice that both A and
∆t do not appear in the final result. By Pascal’s
law, given in Ch. 9,  pressure in one portion of
the gas  in equilibrium is the same as anywhere
else. Second, we have ignored any collisions in
the derivation. Though this assumption is
difficult to justify rigorously, we can qualitatively
see that it will not lead to erroneous results. The
number of molecules hitting the wall in time ∆t
was found to be ½ n Av

x
 ∆t. Now the collisions

are random and the gas is in a steady state.
Thus, if a molecule with velocity (v

x
, v

y
, v

z
 )

acquires a  different velocity due to collision with
some molecule, there will always be some other

Fig. 12.4 Elastic collision of a gas molecule with the
wall of the container.

To calculate the force (and pressure) on the
wall, we need to calculate momentum imparted
to the wall per unit time. In a small time interval
∆t, a molecule with x-component of velocity v

x

will hit the wall if it is within the distance v
x
 ∆t

from the wall. That is, all molecules within the
volume Av

x 
∆t only can hit the wall in time ∆t.

But, on the average, half of these are moving
towards the wall and the other half away from
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⊳

molecule with a different initial velocity which
after a collision acquires the velocity  (v

x
, v

y
, v

z
 ).

If this were not so, the distribution of velocities
would not remain steady. In any case we are
finding 2

xv . Thus, on the whole, molecular
collisions (if they are not too frequent and the
time spent in a collision is negligible compared
to time between collisions)  will not affect the
calculation above.

12.4.2 Kinetic Interpretation of Temperature

Equation (13.14) can be written as
PV   =  (1/3) nV m 2v (12.15a)

PV   =   (2/3) N x ½ m 2v (12.15b)
where N (= nV ) is the number of molecules in
the sample.

The quantity in the bracket is the average
translational kinetic energy of the molecules in
the gas. Since the internal energy E of an ideal
gas is purely kinetic*,

E = N × (1/2) m 2v (12.16)

Equation (12.15) then gives :
PV = (2/3) E (12.17)
We are now ready for a kinetic interpretation

of temperature. Combining Eq. (12.17) with the
ideal gas Eq. (12.3), we get

E = (3/2)  k
B  NT                                             (12.18)

or  E/ N = ½  m 2v    =   (3/2) k
B
T (12.19)

i.e., the average kinetic energy of a molecule is
proportional to the absolute temperature of the
gas; it is independent of pressure, volume or
the nature of the ideal gas. This is a fundamental
result relating temperature, a macroscopic
measurable parameter of a gas
(a thermodynamic variable as it is called) to a
molecular quantity, namely the average kinetic
energy of a molecule. The two domains are
connected by the Boltzmann constant. We note
in passing that Eq. (12.18) tells us that internal
energy of an ideal gas depends only on
temperature, not on pressure or volume. With
this interpretation of temperature, kinetic theory
of an ideal gas is completely consistent with the
ideal gas equation and the various gas laws
based on it.

For a mixture of non-reactive ideal gases, the
total pressure gets contribution from each gas
in the mixture. Equation (12.14) becomes

P = (1/3) [n1m1
2
1v  + n2 m2 

2
2v +…  ] (12.20)

In equilibrium, the average kinetic energy of
the molecules of different gases will be equal.
That is,

½  m1 
2
1v  = ½ m2 

2
2v = (3/2) k

B
 T

so that
P = (n1 + n2 +…  ) k

B
 T (12.21)

which is Dalton’s law of partial pressures.
From Eq. (12.19), we can get an idea of the

typical speed of molecules in a gas. At a
temperature T = 300 K, the mean square speed
of a molecule in nitrogen gas is :

2 –26

26

28
4.65 10

6.02 10

N

A

M
m

N
= = = ×

×  kg.

2v   =  3 k
B
 T / m    =    (516)2 m2s-2

The square root of 2v  is known as root mean
square (rms) speed and is denoted by vrms,

( We can also write    2v     as   < v2 >.)
vrms   =    516 m s-1

The speed is of the order of the speed of sound
in air. It follows from Eq. (12.19) that at the same
temperature, lighter molecules have greater rms
speed.

Example 12.5 A flask contains argon and
chlorine in the ratio of 2:1 by mass.  The
temperature of the mixture is 27 °C. Obtain
the ratio of  (i) average kinetic energy per
molecule, and (ii) root mean square speed
vrms of the molecules of the two gases.
Atomic mass of argon = 39.9 u; Molecular
mass of chlorine = 70.9 u.

Answer The important point to remember is that
the average kinetic energy (per molecule) of any
(ideal) gas (be it monatomic like argon, diatomic
like chlorine or polyatomic) is always equal to
(3/2) k

B
T. It depends only on temperature, and

is independent of the nature of the gas.
(i) Since argon and chlorine both have the same

temperature in the flask, the ratio of average
kinetic energy (per molecule) of the two gases
is 1:1.

(ii) Now  ½ m vrms
2  =  average kinetic energy per

molecule =  (3/2) ) kBT where m is the mass

* E denotes the translational part of the internal energy U that may include energies due to other degrees of
freedom also. See section 12.5.
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of a molecule of the gas. Therefore,

( )
( )

( )
( )

( )
( )

2

Cl ClAr

2
Ar ArCl

rms

rms

m M

m M
= =

v

v
= 

70.9

39.9
 =1.77

where M denotes the molecular mass of the gas.
(For argon, a molecule is just an atom of argon.)
Taking square root of both sides,

( )
( )

Ar

Cl

rms

rms

v

v
 =  1.33

You should note that the composition of the
mixture by mass is quite irrelevant to the above
calculation. Any other proportion by mass of
argon and chlorine would give the same answers
to (i) and (ii), provided the temperature remains
unaltered. ⊳

Example 12.6   Uranium has two isotopes
of masses 235 and 238 units. If both are
present in Uranium hexafluoride gas which
would have the  larger average speed ? If
atomic mass of fluorine is 19 units,
estimate the percentage difference in
speeds at any temperature.

Answer  At a fixed temperature the average
energy  = ½ m <v2 > is constant. So  smaller the
mass of the molecule, faster will be the speed.
The ratio of speeds is inversely proportional to
the square root of the ratio of the masses. The
masses are 349 and 352 units. So

v349 / v352  =   ( 352/ 349)1/2 = 1.0044 .

Hence difference 
V

V

∆
= 0.44 %.

[235U is the isotope needed for nuclear fission.
To separate it from the more abundant isotope
238U,  the mixture  is surrounded by a  porous
cylinder. The porous cylinder must be thick and
narrow, so that the molecule wanders through
individually, colliding with the walls of the long
pore. The faster molecule will leak out more than
the slower one and so there is more of the lighter
molecule (enrichment) outside the porous
cylinder (Fig. 12.5). The method is not very
efficient and has to be repeated several times
for sufficient enrichment.]. ⊳

When gases diffuse, their rate of diffusion is
inversely proportional to square root of the
masses (see Exercise 12.12 ). Can you guess the
explanation from the above answer?

Fig. 12.5  Molecules going through a porous wall.

Example 12.7  (a)  When a molecule (or an
elastic ball) hits a ( massive) wall, it
rebounds with the same speed. When a ball
hits a massive bat held firmly, the same
thing happens. However, when the bat is
moving towards the ball, the ball rebounds
with a different speed. Does the ball move
faster or slower? (Ch.5 will refresh your
memory on elastic collisions.)

(b) When gas in a cylinder is compressed
by pushing in a piston, its temperature
rises. Guess at an explanation of this in
terms of kinetic theory using (a) above.

(c) What happens when a compressed gas
pushes a piston out and expands. What
would you observe ?
(d) Sachin Tendulkar used a heavy cricket
bat while playing. Did it help him in
anyway ?

Answer  (a)  Let the speed of the ball be u  relative
to the wicket behind the bat. If the bat is moving
towards the ball with a speed V  relative to the
wicket, then the relative speed of the ball to bat
is V + u  towards the bat. When the ball rebounds
(after hitting the massive bat) its speed,  relative
to bat,  is V + u  moving away from the bat. So
relative to the wicket the speed of the rebounding
ball is V + (V + u) = 2V + u, moving away from the
wicket. So the ball speeds up after the collision
with the bat. The rebound speed will be less than
u if the bat is not massive. For a molecule this
would imply an increase in temperature.
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You  should be able to answer (b) (c) and (d)
based on the answer to (a).
(Hint: Note the correspondence, pistonà bat,

cylinder à wicket, molecule à ball.)         ⊳

12.5  LAW OF EQUIPARTITION OF ENERGY

The kinetic energy of a single molecule is

2 2 21 1 1
      

2 2 2
t x y zmv mv mvε = + + (12.22)

For a gas in thermal equilibrium at
temperature T  the average value of energy

denoted by   < tε > is

2 2 21 1 1 3

2 2 2 2
t x y z Bmv mv mv k Tε = + + = (12.23)

Since there is no preferred direction, Eq. (12.23)
implies

21 1
    

2 2
x Bmv k T=  ,

21 1
    

2 2
y Bmv k T= ,

21 1
    

2 2
z Bmv k T= (12.24)

A molecule free to move in space needs three
coordinates to specify its location. If it is
constrained to move in a plane it needs two; and
if constrained to move along a line, it needs just
one coordinate to locate it. This can also be
expressed in another way. We say that it has
one degree of freedom for motion in a line, two
for motion in a plane and three for motion in
space. Motion of a body as a whole from one
point to another is called translation. Thus, a
molecule free to move in space has three
translational degrees of freedom. Each
translational degree of freedom contributes a
term that contains square of some variable of
motion, e.g., ½ mv

x
2  and similar terms in

v
y
 and v

z
. In, Eq. (12.24) we see that in thermal

equilibrium, the average of each such term is
½ k

B
T .

Molecules of a monatomic gas like argon have
only translational degrees of freedom. But what
about a diatomic gas such as O2 or N2? A
molecule of O2 has three translational degrees
of freedom. But in addition it can also rotate
about its centre of mass. Figure 12.6 shows the
two independent axes of rotation 1 and 2, normal

to the axis joining the two oxygen atoms about
which the molecule can rotate*. The molecule
thus has two rotational degrees of freedom, each
of which contributes a term to the total energy
consisting of translational energy tε  and
rotational energy εr

.

2 2 2 2 2
1 1 2 2

1 1 1 1 1

2 2 2 2 2
t r x y zmv mv mv I Iε ε ω ω+ = + + + + (12.25)

* Rotation along the line joining the atoms has very small moment of inertia and does not come into play for
quantum mechanical reasons. See end of section 12.6.

Fig. 12.6 The two independent axes of rotation of

a diatomic molecule

where ω1 and ω2  are the angular speeds about
the axes 1 and 2 and I1, I2 are the corresponding
moments of inertia. Note that each rotational
degree of freedom contributes a term to the
energy that contains square of a rotational
variable of motion.

We have assumed above that the O2 molecule
is a ‘rigid rotator’, i.e., the molecule does not
vibrate. This assumption, though found to be
true (at moderate temperatures) for O2, is not
always valid. Molecules, like CO, even at
moderate temperatures have a mode of
vibration, i.e., its atoms oscillate along the
interatomic axis like a one-dimensional
oscillator, and contribute a vibrational energy
term ε

v
 to the total energy:

εv m
y

t
ky= 



 +1

2

1

2

2

2d

d

t r vε ε ε= + + ε (12.26)
where k is the force constant of the oscillator
and y the vibrational co-ordinate.

Once again the vibrational energy terms in
Eq. (12.26) contain squared terms of vibrational
variables of motion y and dy/dt .
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At this point, notice an important feature in
Eq.(12.26). While each translational and
rotational degree of freedom has contributed only
one ‘squared term’ in Eq.(12.26), one vibrational
mode contributes two ‘squared terms’ : kinetic
and potential energies.

Each quadratic term occurring in the
expression for energy is a mode of absorption of
energy by the molecule. We have seen that in
thermal equilibrium at absolute temperature T,
for each translational mode of motion, the
average energy is ½ k

B
T. The most elegant

principle of classical statistical mechanics (first
proved by Maxwell) states that this is so for each
mode of energy: translational, rotational and
vibrational. That is, in equilibrium, the total
energy is equally distributed in all possible
energy modes, with each mode having an average
energy equal to  ½ k

B
T. This is known as the law

of equipartition of energy. Accordingly, each
translational and rotational degree of freedom
of a molecule contributes ½ k

B
T  to the energy,

while each vibrational frequency contributes
2 × ½ k

B
T  = k

B
T ,  since a vibrational mode has

both kinetic and potential energy modes.
The proof of the law of equipartition of energy

is beyond the scope of this book. Here, we shall
apply the law to predict the specific heats of gases
theoretically. Later, we shall also discuss briefly,
the application to specific heat  of solids.

12.6  SPECIFIC HEAT CAPACITY

12.6.1 Monatomic Gases

The molecule of a monatomic gas has only three
translational degrees of freedom. Thus, the
average energy of a molecule at temperature
T is (3/2)kBT .  The total internal energy of a mole
of such a gas is

3 3
 

2 2
B AU k T N RT= × = (12.27)

The molar specific heat at constant volume,
C

v
, is

 C
v
 (monatomic gas) = 

d

d

U

T
 =

3

2
RT (12.28)

For an ideal gas,
C

p
 – C

v
 = R (12.29)

where C
p
 is the molar specific heat at constant

pressure.  Thus,

C
p
 = 5

2
 R    (12.30)

The ratio of specific heats p

v

5

3

C

C
γ = =    (12.31)

12.6.2 Diatomic Gases

As explained earlier, a diatomic molecule treated
as a rigid rotator, like a dumbbell, has 5 degrees
of freedom: 3 translational and 2 rotational.
Using the law of equipartition of energy, the total
internal energy of a mole of such a gas is

5 5

2 2
B AU k T N RT= × = (12.32)

The molar specific heats are then given by

C
v
 (rigid diatomic) = 

5

2
R, C

p
 = 

7

2
R (12.33)

γ (rigid diatomic) = 
7

5
(12.34)

If the diatomic molecule is not rigid but has
in addition a vibrational mode

U k T k T N  RTB B A= +








 =

5

2

7

2

7 9 9
, ,  

2 2 7
v pC R C R γ= = = R (12.35)

12.6.3 Polyatomic Gases

In general a polyatomic molecule has 3
translational, 3 rotational degrees of freedom
and a certain number ( f ) of vibrational modes.
According to the law of equipartition of energy,
it is easily seen that one mole of such a gas has

U = 3

2




 k
B
T + 3

2
 k

B
T + f k

B
T 



 N
A

i.e.,C
v
 = (3 + f ) R,  C

p
 = (4 + f ) R,

( )
( )

f

f
γ

4 +
=

3 +
(12.36)

Note that C
p
 – C

v
 = R is true for any ideal

gas, whether mono, di or polyatomic.
Table 12.1 summarises the theoretical

predictions for specific heats of gases ignoring
any vibrational modes of motion. The values are
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⊳

in good agreement with experimental values of

specific heats of several gases given in Table 12.2.

Of course, there are discrepancies between

predicted and actual values of specific heats of

several other gases (not shown in the table), such

as Cl
2
, C

2
H

6
 and many other polyatomic gases.

Usually, the experimental values for specific

heats of these gases are greater than the

predicted values as given in Table12.1 suggesting

that the agreement can be improved by including

vibrational modes of motion in the calculation.

The  law of equipartition of energy is, thus, well

verified experimentally at ordinary temperatures.

Table 12.1 Predicted values of specific heat
capacities of gases (ignoring

vibrational modes)

Nature of
Gas

C
v

(J mol-1
K-1

)

C
p

(J mol-1
K-1

)

C
p
- C

v

(J mol-1
K-1

)

g

Monatomic 12.5 20.8 8.31 1.67

Diatomic 20.8 29.1 8.31 1.40

Triatomic 24.93 33.24 8.31 1.33

Table12.2 Measured values of specific heat

capacities of some gases

Example 12.8 A cylinder of fixed capacity
44.8 litres contains helium gas at standard
temperature and pressure. What is the
amount of heat needed to raise the
temperature of the gas in the cylinder by
15.0 °C ? (R = 8.31 J mo1–1 K–1).

Answer Using the gas law PV = µRT, you can
easily show that 1 mol of any (ideal) gas at
standard temperature (273 K) and pressure

(1 atm = 1.01 × 105 Pa) occupies a volume of  22.4

litres. This universal volume is called molar
volume. Thus the cylinder in this example
contains 2 mol of helium. Further, since helium
is monatomic, its predicted (and observed) molar
specific heat at constant volume, C

v
 = (3/2) R,

and molar specific heat at constant pressure,
C

p
 = (3/2) R + R = (5/2) R .  Since the volume of

the cylinder is fixed, the heat required is
determined by C

v
. Therefore,

Heat required = no. of moles × molar specific heat

× rise in temperature

= 2 × 1.5 R × 15.0 = 45 R

= 45 × 8.31 = 374 J. ⊳

12.6.4   Specific Heat Capacity of Solids

We can use the law of equipartition of energy to
determine specific heats of solids. Consider a
solid of N atoms, each vibrating about its mean
position. An oscillation in one dimension has

average energy of 2 × ½ k
B
T = k

B
T . In three

dimensions, the average energy is 3 k
B
T. For a

mole of solid, N = N
A
, and the total

energy is

U =  3  k
B
T × N

A
  = 3 RT

Now at constant pressure ∆Q = ∆U + P∆V

= ∆U,  since for a solid  ∆V is negligible. Hence,

 3
Q U

C R
T T

∆ ∆
= = =

∆ ∆
(12.37)

Table 12.3 Specific Heat Capacity of some
solids at room temperature and
atmospheric pressure

As Table 12.3 shows the prediction generally
agrees with experimental values at ordinary
temperature (Carbon is an exception).

12.7  MEAN FREE PATH

Molecules in a gas have rather large speeds of
the order of the speed of sound. Yet a gas leaking

2024-25



KINETIC THEORY 255

⊳

from a cylinder in a kitchen takes considerable
time to diffuse to the other corners of the room.
The top of a cloud of smoke holds together for
hours. This happens because molecules in a gas
have a finite though small size, so they are bound
to undergo collisions. As a result, they cannot
move straight unhindered; their paths keep
getting incessantly deflected.

Fig. 12.7 The volume swept by a molecule in time ∆t

in which any molecule will collide with it.

Suppose the molecules of a gas are spheres of
diameter d. Focus on a single molecule with the
average speed <v>. It will suffer collision with
any molecule that comes within a distance d
between the centres. In time ∆t, it sweeps a
volume πd2 <v> ∆t wherein any other molecule
will collide with it (see Fig. 12.7). If n is the
number of molecules per unit volume, the
molecule suffers nπd2 <v> ∆t  collisions in time
∆t. Thus the rate of collisions is  nπd2 <v> or the
time between two successive collisions is on the
average,

τ  = 1/(nπ <v> d2 ) (12.38)
The average distance between two successive

collisions, called the mean free path l, is :
l  = <v> τ = 1/(nπd2) (12.39)
In this derivation, we imagined the other

molecules to be at rest. But actually all molecules

are moving and the collision rate is determined
by the average relative velocity of the molecules.
Thus we need to replace <v> by <v

r
> in Eq.

(12.38). A more exact treatment gives

( )2
1/ 2l n dπ= (12.40)

Let us estimate l and τ  for air molecules with
average speeds  <v> = ( 485m/s). At STP

n = 
( )
( )

×

×

23

–3

0.02 10

22.4 10

=  2.7 × 10 25 m -3.

Taking, d = 2 × 10–10 m,
τ = 6.1 × 10–10 s
and l = 2.9 × 10–7 m ≈ 1500 d (12.41)
As expected, the mean free path given by

Eq. (12.40) depends inversely on the number
density and the size of the molecules. In a highly
evacuated tube n is rather small and the mean
free path can be as large as the length of the
tube.

Example 12.9 Estimate the mean free path
for a water molecule in water vapour at 373 K.
Use information from Exercises 12.1 and Eq.
(12.41) above.

Answer The d for water vapour is same as that
of air. The number density is inversely
proportional to absolute temperature.

So 25 25 –3273
2.7 10 2 10 m

373
n = × × = ×

Hence, mean free path –7
4 10 ml = × ⊳

Note that the mean free path is 100 times the

interatomic distance ~ 40 Å = 4 × 10-9 m calculated
earlier. It is this large value of mean free path that
leads to the typical gaseous behaviour. Gases can
not be confined without a container.

Using, the kinetic theory of gases, the bulk
measurable properties like viscosity, heat
conductivity and diffusion can be related to the
microscopic parameters like molecular size. It is
through such relations that the molecular sizes
were first estimated.

t

d

d

v
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SUMMARY

1. The ideal gas equation connecting pressure (P ), volume (V ) and absolute temperature
(T ) is

                                         PV = µ RT     = k
B
 NT

where µ is the number of moles and N is the number of molecules. R and k
B
 are universal

constants.

R = 8.314 J mol–1 K–1,     k
B
  = 

A

R

N    = 1.38 ××××× 10–23 J K–1

Real gases satisfy the ideal gas equation only approximately, more so at low pressures
and high temperatures.

2. Kinetic theory of an ideal gas gives the relation

                                        
21

3
P   n m v=

where n is number density of molecules, m the mass of the molecule and 2v    is the

mean of squared speed. Combined with the ideal gas equation it yields a kinetic
interpretation of temperature.

21 3

2 2
B m v    k  T= ,  ( )1/2

2 rmsv v=
3 Bk T

m
=

This tells us that  the temperature of a gas is a measure of the average kinetic energy of
a molecule, independent of the nature of the gas or molecule. In a mixture of gases at a
fixed temperature the heavier molecule has the lower average speed.

3. The translational kinetic energy

E = 

2

3  k
B 
NT.

This leads to a relation

PV = 
2

3
 E

4. The law of equipartition of energy states that if a system is in equilibrium at absolute
temperature T, the total energy is distributed equally in different energy modes of
absorption, the energy in each mode being equal to ½ k

B
 T. Each translational and

rotational degree of freedom corresponds to one energy mode of absorption and has
energy ½ k

B
 T. Each vibrational frequency has two modes of energy (kinetic and potential)

with corresponding energy equal to

2 ××××× ½ k
B
 T = k

B
 T.

5. Using the law of equipartition of energy, the molar specific heats of gases can be
determined and the values are in agreement with the experimental values of specific
heats of several gases. The agreement can be improved by including vibrational modes
of motion.

6. The mean free path l is the average distance covered by a molecule between two successive
collisions :

2

1

2 π
 = l

 n  d

where n is the number density and d the diameter of the molecule.
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POINTS TO PONDER
1. Pressure of a fluid is not only exerted on the wall. Pressure exists everywhere in a fluid.

Any layer of gas inside the volume of a container is in equilibrium because the pressure
is the same on both sides of the layer.

2. We should not have an exaggerated idea of the intermolecular distance in a gas. At
ordinary pressures and temperatures, this is only 10 times or so the interatomic distance
in solids and liquids. What is different is the mean free path which in a gas is 100 times
the interatomic distance and 1000 times the size of the molecule.

3. The law of equipartition of energy is stated thus: the energy for each degree of freedom
in thermal equilibrium is ½ k

B
 T. Each quadratic term in the total energy expression of

a molecule is to be counted as a degree of freedom. Thus, each vibrational mode gives 2
(not 1) degrees of freedom (kinetic and potential energy modes), corresponding to the

energy 2 ××××× ½ k
B
 T = k

B
 T.

4. Molecules of air in a room do not all fall and settle on the ground (due to gravity)
because of their high speeds and incessant collisions. In equilibrium, there is a very
slight increase in density at lower heights (like in the atmosphere). The effect is small
since the potential energy (mgh) for ordinary heights is much less than the average
kinetic energy ½ mv2 of the molecules.

5. < v2 >  is not always equal to ( < v >)2. The average of a squared quantity is not necessarily
the square of the average. Can you find examples for this statement.

EXERCISESEXERCISESEXERCISESEXERCISESEXERCISES

12.112.112.112.112.1 Estimate the fraction of molecular volume to the actual volume occupied by oxygen
gas at STP. Take the diameter of an oxygen molecule to be 3 Å.

12.212.212.212.212.2 Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard
temperature and pressure (STP : 1 atmospheric pressure, 0 °C). Show that it is 22.4
litres.

12.312.312.312.312.3 Figure 12.8 shows plot of PV/T  versus P for 1.00×××××10–3 kg of oxygen gas at two
different temperatures.

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8

(a) What does the dotted plot signify?
(b) Which is true: T1 > T2 or T1 < T2?
(c) What is the value of PV/T where the curves meet on the y-axis?

PV
T

(J K   )
–1

P

T1
T2

x

y

2024-25



258 PHYSICS

(d) If we obtained similar plots for 1.00×××××10–3 kg of hydrogen, would we get the same
value of PV/T  at the point where the curves meet on the y-axis? If not, what mass
of hydrogen yields the same value of PV/T  (for low pressure high temperature
region of the plot) ? (Molecular mass of H2 = 2.02 u, of O2 = 32.0 u,
R = 8.31 J mo1–1 K–1.)

12.412.412.412.412.4 An oxygen cylinder of volume 30 litre has an initial gauge pressure of 15 atm and a
temperature of 27 °C. After some oxygen is withdrawn from the cylinder, the gauge
pressure drops to 11 atm and its temperature drops to 17 °C. Estimate the mass of
oxygen taken out of the cylinder (R = 8.31 J mol–1 K–1, molecular mass of O2 = 32 u).

12.512.512.512.512.5 An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a
temperature of 12 °C. To what volume does it grow when it reaches the surface,
which is at a temperature of 35 °C ?

12.612.612.612.612.6 Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water
vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of
27 °C and 1 atm pressure.

12.712.712.712.712.7 Estimate the average thermal energy of a helium atom at (i) room temperature
(27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature
of 10 million kelvin (the typical core temperature in the case of a star).

12.812.812.812.812.8 Three vessels of equal capacity have gases at the same temperature and pressure. The
first vessel contains neon (monatomic), the second contains chlorine (diatomic),
and the third contains uranium hexafluoride (polyatomic). Do the vessels contain
equal number of respective molecules ? Is the root mean square speed of molecules
the same in the three cases? If not, in which case is vrms the largest ?

12.912.912.912.912.9 At what temperature is the root mean square speed of an atom in an argon gas
cylinder equal to the rms speed of a helium gas atom at – 20 °C ? (atomic mass of Ar
= 39.9 u, of He = 4.0 u).

12.1012.1012.1012.1012.10 Estimate the mean free path and collision frequency of a nitrogen molecule in a
cylinder containing nitrogen at 2.0 atm and temperature 17 0C. Take the radius of a
nitrogen molecule to be roughly 1.0 Å. Compare the collision time with the time the
molecule moves freely between two successive collisions (Molecular mass of
N2 = 28.0 u).
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