
CHAPTER FOURTEEN

WAVES

14.1 INTRODUCTION

In the previous Chapter, we studied the motion of objects

oscillating in isolation. What happens in a system, which is
a collection of such objects? A material medium provides

such an example. Here, elastic forces bind the constituents

to each other and, therefore, the motion of one affects that of
the other. If you drop a little pebble in a pond of still water,

the water surface gets disturbed. The disturbance does not

remain confined to one place, but propagates outward along
a circle. If you continue dropping pebbles in the pond, you

see circles rapidly moving outward from the point where the

water surface is disturbed. It gives a feeling as if the water is
moving outward from the point of disturbance. If you put

some cork pieces on the disturbed surface, it is seen that

the cork pieces move up and down but do not move away
from the centre of disturbance. This shows that the water

mass does not flow outward with the circles, but rather a

moving disturbance is created. Similarly, when we speak,
the sound moves outward from us, without any flow of air

from one part of the medium to another. The disturbances

produced in air are much less obvious and only our ears or
a microphone can detect them. These patterns, which move

without the actual physical transfer or flow of matter as a

whole, are called waves. In this Chapter, we will study such
waves.

Waves transport energy and the pattern of disturbance has
information that propagate from one point to another. All our
communications essentially depend on transmission of sig-
nals through waves. Speech means production of sound
waves in air and hearing amounts to their detection. Often,
communication involves different kinds of waves. For exam-
ple, sound waves may be first converted into an electric cur-
rent signal which in turn may generate an electromagnetic
wave that may be transmitted by an optical cable or via a
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satellite. Detection of the original signal will usu-
ally involve these steps in reverse order.

Not all waves require a medium for their
propagation. We know that light waves can
travel through vacuum. The light emitted by
stars, which are hundreds of light years away,

reaches us through inter-stellar space, which
is practically a vacuum.

The most familiar type of waves such as waves
on a string, water waves, sound waves, seismic
waves, etc. is the so-called mechanical waves.
These waves require a medium for propagation,
they cannot propagate through vacuum. They
involve oscillations of constituent particles and
depend on the elastic properties of the medium.
The electromagnetic waves that you will learn
in Class XII are a different type of wave.
Electromagnetic waves do not necessarily require
a medium - they can travel through vacuum.
Light, radiowaves, X-rays, are all electromagnetic
waves. In vacuum, all electromagnetic waves
have the same speed c, whose value is :

c = 299, 792, 458 ms–1. (14.1)

A third kind of wave is the so-called Matter
waves. They are associated with constituents of
matter : electrons, protons, neutrons, atoms and
molecules. They arise in quantum mechanical
description of nature that you will learn in your
later studies. Though conceptually more abstract
than mechanical or electro-magnetic waves, they
have already found applications in several
devices basic to modern technology; matter
waves associated with electrons are employed

in electron microscopes.

In this chapter we will study mechanical
waves, which require a material medium for
their propagation.

The aesthetic influence of waves on art and
literature is seen from very early times; yet the

first scientific analysis of wave motion dates back
to the seventeenth century. Some of the famous
scientists associated with the physics of wave
motion are Christiaan Huygens (1629-1695),
Robert Hooke and Isaac Newton. The
understanding of physics of waves followed the
physics of oscillations of masses tied to springs
and physics of the simple pendulum. Waves in
elastic media are intimately connected with
harmonic oscillations. (Stretched strings, coiled
springs, air, etc., are examples of elastic media).

We shall illustrate this connection through
simple examples.

Consider a collection of springs connected to
one another as shown in Fig. 14.1. If the spring
at one end is pulled suddenly and released, the
disturbance travels to the other end. What has

happened? The first spring is disturbed from its
equilibrium length. Since the second spring is
connected to the first, it is also stretched or
compressed, and so on. The disturbance moves
from one end to the other; but each spring only
executes small oscillations about its equilibrium
position. As a practical example of this situation,
consider a stationary train at a railway station.
Different bogies of the train are coupled to each
other through a spring coupling. When an
engine is attached at one end, it gives a push to
the bogie next to it; this push is transmitted from
one bogie to another without the entire train
being bodily displaced.

Now let us consider the propagation of sound
waves in air. As the wave passes through air, it
compresses or expands a small region of air. This
causes a change in the density of that region,
say δρ, this change induces a change in pressure,
δp, in that region. Pressure is force per unit area,
so there is a restoring force proportional to
the disturbance, just like in a spring. In this
case, the quantity similar to extension or
compression of the spring is the change in
density. If a region is compressed, the molecules
in that region are packed together, and they tend
to move out to the adjoining region, thereby
increasing the density or creating compression
in the adjoining region. Consequently, the air
in the first region undergoes rarefaction. If a
region is comparatively rarefied the surrounding
air will rush in making the rarefaction move to
the adjoining region. Thus, the compression or
rarefaction moves from one region to another,
making the propagation of a disturbance
possible in air.

Fig. 14.1 A collection of springs connected to each
other. The end A is pulled suddenly
generating a disturbance, which then
propagates to the other end.
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In solids, similar arguments can be made. In
a crystalline solid, atoms or group of atoms are
arranged in a periodic lattice. In these, each
atom or group of atoms is in equilibrium, due to
forces from the surrounding atoms. Displacing
one atom, keeping the others fixed, leads to
restoring forces, exactly as in a spring. So we
can think of atoms in a lattice as end points,
with springs between pairs of them.

In the subsequent sections of this chapter
we are going to discuss various characteristic
properties of waves.

14.2 TRANSVERSE AND LONGITUDINAL
WAVES

We have seen that motion of mechanical waves
involves oscillations of constituents of the
medium. If the constituents of the medium
oscillate perpendicular to the direction of wave
propagation, we call the wave a transverse wave.
If they oscillate along the direction of wave
propagation, we call the wave a longitudinal
wave.

Fig.14.2 shows the propagation of a single
pulse along a string, resulting from a single up
and down jerk. If the string is very long compared

position as the pulse or wave passes through
them. The oscillations are normal to the
direction of wave motion along the string, so this
is an example of transverse wave.

We can look at a wave in two ways. We can fix
an instant of time and picture the wave in space.
This will give us the shape of the wave as a
whole in space at a given instant. Another way
is to fix a location i.e. fix our attention on a
particular element of string and see its
oscillatory motion in time.

Fig. 14.4 describes the situation for
longitudinal waves in the most familiar example
of the propagation of sound waves. A long pipe
filled with air has a piston at one end. A single
sudden push forward and pull back of the piston
will generate a pulse of condensations (higher
density) and rarefactions (lower density) in the
medium (air). If the  push-pull of the piston is
continuous and periodic (sinusoidal), a

Fig. 14.3 A harmonic (sinusoidal) wave travelling
along a stretched string is an example of a
transverse wave. An element of the string
in the region of the wave oscillates about
its equilibrium position perpendicular to the
direction of wave propagation.

Fig. 14.2 When a pulse travels along the length of a
stretched string (x-direction), the elements
of the string oscillate up and down (y-
direction)

to the size of the pulse, the pulse will damp out
before it reaches the other end and reflection
from that end may be ignored. Fig. 14.3 shows a
similar situation, but this time the external
agent gives a continuous periodic sinusoidal up
and down jerk to one end of the string. The
resulting disturbance on the string is then a
sinusoidal wave. In either case the elements of
the string oscillate about their equilibrium mean

Fig. 14.4 Longitudinal waves (sound) generated in a
pipe filled with air by moving the piston up
and down. A volume element of air oscillates
in the direction parallel to the direction of
wave propagation.
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sinusoidal wave will be generated propagating
in air along the length of the pipe. This is clearly
an example of longitudinal waves.

The waves considered above, transverse or

longitudinal, are travelling or progressive waves

since they travel from one part of the medium

to another. The material medium as a whole

does not move, as already noted. A stream, for

example, constitutes motion of water as a whole.

In a water wave, it is the disturbance that moves,

not water as a whole. Likewise a wind (motion

of air as a whole) should not be confused with a

sound wave which is a propagation of

disturbance (in pressure density) in air, without

the motion of air medium as a whole.

In transverse waves, the particle motion is

normal to the direction of propagation of the

wave. Therefore, as the wave propagates, each

element of the medium undergoes a shearing

strain. Transverse waves can, therefore, be

propagated only in those media, which can

sustain shearing stress, such as solids and not

in fluids. Fluids, as well as, solids can sustain

compressive strain; therefore, longitudinal

waves can be propagated in all elastic media.

For example, in medium like steel, both

transverse and longitudinal waves can

propagate, while air can sustain only

longitudinal waves. The waves on the surface

of water are of two kinds: capillary waves and

gravity waves. The former are ripples of fairly

short wavelength—not more than a few

centimetre—and the restoring force that

produces them is the surface tension of water.

Gravity waves have wavelengths typically

ranging from several metres to several hundred

meters. The restoring force that produces these

waves is the pull of gravity, which tends to keep

the water surface at its lowest level. The

oscillations of the particles in these waves are

not confined to the surface only, but extend with

diminishing amplitude to the very bottom. The

particle motion in water waves involves a

complicated motion—they not only move up and

down but also back and forth. The waves in an

ocean are the combination of both longitudinal

and transverse waves.
It is found that, generally, transverse and

longitudinal waves travel with different speed
in the same medium.

uuuuu Example 14.1  Given below are some
examples of wave motion. State in each case
if the wave motion is transverse, longitudinal
or a combination of both:
(a) Motion of a kink in a longitudinal spring

produced by displacing one end of the
spring sideways.

(b) Waves produced in a cylinder
containing a liquid by moving its piston
back and forth.

(c) Waves produced by a motorboat sailing
in water.

(d) Ultrasonic waves in air produced by a
vibrating quartz crystal.

Answer
(a) Transverse and longitudinal
(b) Longitudinal
(c) Transverse and longitudinal
(d) Longitudinal ⊳

14.3 DISPLACEMENT RELATION IN
A  PROGRESSIVE WAVE

For mathematical description of  a travelling
wave, we need a function of both position x and
time t. Such a function at every instant should
give the shape of the wave at that instant. Also,
at every given location, it should describe the
motion of the constituent of the medium at that
location. If we wish to describe a sinusoidal
travelling wave (such as the one shown in Fig.
14.3) the corresponding function must also be
sinusoidal. For convenience, we shall take the
wave to be transverse so that if the position of
the constituents of the medium is denoted by x,
the displacement from the equilibrium position
may be denoted by y. A sinusoidal travelling
wave is then described by:

( , ) sin( )= − ω + φy x t a kx t (14.2)

The term φ in the argument of sine function
means equivalently that we are considering a
linear combination of sine and cosine functions:

( , ) sin( ) cos( )y x t A kx t B kx tω ω= − + − (14.3)

From Equations (14.2) and (14.3),

2 2a A B= +  and  1tanφ −=
B

A







To understand why Equation (14.2)
represents a sinusoidal travelling wave, take a
fixed instant,  say t = t

0
. Then, the argument of

the sine function in Equation (14.2) is simply
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kx + constant. Thus, the shape of the wave (at

any fixed instant) as a function of x  is a sine

wave. Similarly, take a fixed location, say x = x
0
.

Then, the argument of the sine function in
Equation (14.2) is constant -ωt. The
displacement y, at a fixed location, thus, varies
sinusoidally with time. That is, the constituents
of the medium at different positions execute
simple harmonic motion. Finally, as t increases,
x must increase in the positive direction to keep
kx – ωt + φ  constant. Thus, Eq. (14.2) represents
a sinusiodal (harmonic) wave travelling along
the positive direction of the x-axis. On the other
hand, a function

( , ) sin( )= + ω + φy x t a kx t  (14.4)

represents a wave travelling in the negative
direction of x-axis. Fig. (14.5) gives the names of
the various physical quantities appearing in Eq.
(14.2) that we now interpret.

    Fig. 14.6 shows the plots of Eq. (14.2) for
different values of time differing by equal
intervals of time. In a wave, the crest is the
point of maximum positive displacement, the
trough is the point of maximum negative
displacement. To see how a wave travels, we
can fix attention on a crest and see how it
progresses with time. In the figure, this is
shown by a cross (×) on the crest. In the same
manner, we can see the motion of a particular
constituent of the medium at a fixed location,
say at the origin of the x-axis. This is shown
by a solid dot (•). The plots of Fig. 14.6 show
that with time, the solid dot (•) at the origin
moves periodically, i.e., the particle at the
origin oscillates about its mean position as
the wave progresses. This is true for any other
location also. We also see that during the time
the solid dot (•) has completed one full
oscillation, the crest has moved further by a
certain distance.

Using the plots of Fig. 14.6, we now define
the various quantities of Eq. (14.2).

14.3.1  Amplitude and Phase

In Eq. (14.2), since the sine function varies

between 1 and –1, the displacement y (x,t) varies

between a and –a. We can take a to be a positive

constant, without any loss of generality. Then,

a represents the maximum displacement of the

constituents of the medium from their

equilibrium position. Note that the displacement

y may be positive or negative, but a is positive.

It is called the amplitude of the wave.

The quantity (kx – ωt + φ) appearing as the

argument of the sine function in Eq. (14.2) is

called the phase of the wave. Given the

amplitude a, the phase determines the

displacement of the wave at any position and

at any instant. Clearly φ is the phase at x = 0

and t = 0. Hence, φ is called the initial phase

angle. By suitable choice of origin on the x-axis

and the intial time, it is possible to have φ = 0.

Thus there is no loss of generality in dropping

φ, i.e., in taking Eq. (14.2) with φ = 0.

Fig. 14.5 The meaning of standard symbols in
Eq. (14.2)

y(x,t) : displacement as a function of
position x and time t

a : amplitude of a wave
ω : angular frequency of the wave
k : angular wave number
kx–ωt+φ : initial phase angle (a+x = 0, t = 0)

Fig. 14.6 A harmonic wave progressing along the
positive direction of x-axis at different times.
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14.3.2  Wavelength and Angular Wave
Number

The minimum distance between two points

having the same phase is called the wavelength

of the wave, usually denoted by λ. For simplicity,

we can choose points of the same phase to be

crests or troughs. The wavelength is then the

distance between two consecutive crests or

troughs in a wave. Taking  φ = 0 in Eq. (14.2),

the displacement at  t = 0 is given by

( , 0) sin=y x a kx      (14.5)

Since the sine function repeats its value after
every 2π change in angle,

That is the displacements at points x and at

2n
x

k

π+

are the same, where n=1,2,3,... The 1east
distance between points with the same
displacement (at any given instant of time) is
obtained by taking n = 1. λ  is then given by

2

k

πλ =      or   
2

k
π

λ
=     (14.6)

k is the angular wave number or propagation
constant; its SI unit is radian per metre or

1 rad m− *

14.3.3 Period, Angular Frequency and

Frequency

Fig. 14.7 shows again a sinusoidal plot. It

describes not the shape of the wave at a certain

instant but the displacement of an element (at

any fixed location) of the medium as a function

of time. We may for, simplicity, take Eq. (14.2)

with φ = 0 and monitor the motion of the element

say at 0x = . We then get

(0, ) sin( )y t a tω= −

   sina tω= −

Now, the period of oscillation of the wave is the
time it takes for an element to complete one full
oscillation. That is

sin sin ( T)a t a tω ω− = − +
   sin( T)a tω ω= − +

Since sine function repeats after every 2π ,

T 2ω π=   or   
2

T

πω = (14.7)

ω  is called the angular frequency of the wave.

Its SI unit is rad s –1. The frequency ν is the
number of oscillations per second. Therefore,

1

T 2

ων
π

= =  (14.8)

ν  is usually measured in hertz.

In the discussion above, reference has always

been made to a wave travelling along a string or

a transverse wave. In a longitudinal wave, the

displacement of an element of the medium is

parallel to the direction of propagation of the

wave. In Eq. (14.2), the displacement function

for a longitudinal wave is written as,

s(x, t) = a sin (kx – ωt + φ) (14.9)

where s(x, t ) is the displacement of an element
of the medium in the direction of propagation
of the wave at position x and time t. In Eq. (14.9),
a

 
is the displacement amplitude; other

quantities have the same meaning as in case
of a transverse wave except that the
displacement function y (x, t ) is to be replaced
by the function s (x, t ).

* Here again, ‘radian’ could be dropped and the units could be written merely as m–1. Thus, k represents 2π
times the number of waves (or the total phase difference) that can be accommodated per unit length, with SI
units m–1.

Fig. 14.7 An element of a string at a fixed location

oscillates in time with amplitude a and
period T, as the wave passes over it.
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uuuuu Example 14.2  A wave travelling along a
string is described by,

y(x, t) = 0.005 sin (80.0 x – 3.0 t),

in which the numerical constants are in
SI units (0.005 m, 80.0 rad m–1, and
3.0 rad s–1). Calculate (a) the amplitude,
(b) the wavelength, and (c) the period and
frequency of the wave. Also, calculate the
displacement y of the wave at a distance
x = 30.0 cm and time t = 20 s ?

Answer  On comparing this displacement
equation with Eq. (14.2),

y (x, t ) = a sin (kx –  ωt ),

we find
(a) the amplitude of the wave is 0.005 m = 5 mm.
(b) the angular wave number k and angular

frequency ω are

k = 80.0  m–1 and ω = 3.0 s–1

We, then, relate the wavelength λ to k through
Eq. (14.6),

λ = 2π/k

   180.0 m

2π
−

=

=  7.85 cm

(c) Now, we relate T to ω by the relation

T = 2π/ω

                   1
3.0 s

2π
−

=

                    = 2.09 s

and frequency, v  = 1/T = 0.48 Hz

The displacement y at x = 30.0 cm and
time t = 20 s is given by

y  = (0.005 m) sin (80.0 × 0.3 – 3.0 × 20)

            = (0.005 m) sin (–36 + 12π)
 = (0.005 m) sin (1.699)

            = (0.005 m) sin (970) j 5 mm   ⊳

14.4   THE SPEED OF A TRAVELLING WAVE

To determine the speed of propagation of a
travelling wave, we can fix our attention on any
particular point on the wave (characterised by
some value of the phase) and see how that point
moves in time. It is convenient to look at the
motion of the crest of the wave. Fig. 14.8 gives

the shape of the wave at two instants of time,
which differ by a small time internal ∆t. The
entire wave pattern is seen to shift to the right
(positive direction of x-axis) by a distance ∆x. In
particular, the crest shown by a dot (• ) moves a

distance ∆x in time ∆t. The speed of the wave is
then ∆x/∆t. We can put the dot (• ) on a point
with any other phase. It will move with the same
speed v (otherwise the wave pattern will not
remain fixed). The motion of a fixed phase point
on the wave is given by

kx – ωt = constant (14.10)

Thus, as time t changes, the position x of the
fixed phase point must change so that the phase
remains constant. Thus,

kx – ωt = k(x+∆x) – ω(t+∆t)

or k ∆x – ω ∆t =0

Taking ∆x, ∆t vanishingly small, this gives

ω 
= =

d

 dx
v

t k
(14.11)

Relating ω to T and k to λ, we get

2

2 /

πν λλν
π λ

= = =v
T

(14.12)

Eq. (14.12), a general relation for all progressive
waves, shows that in the time required for one full
oscillation by any constituent of the medium, the
wave pattern travels a distance equal to the
wavelength of the wave. It should be noted that
the speed of a mechanical wave is determined by
the inertial (linear mass density for strings, mass
density in general) and elastic properties (Young’s
modulus for linear media/ shear modulus, bulk
modulus) of the medium. The medium determines

Fig. 14.8 Progression of a harmonic wave from time

t  to t + ∆t. where ∆t is a small interval.

The wave pattern as a whole shifts to the
right. The crest of the wave (or a point with
any fixed phase) moves right by the distance
∆x in time ∆t.
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the speed; Eq. (14.12) then relates wavelength to
frequency for the given speed. Of course, as
remarked earlier, the medium can support both
transverse and longitudinal waves, which will have
different speeds in the same medium. Later in this
chapter, we shall obtain specific expressions for
the speed of mechanical waves in some media.

14.4.1 Speed of a Transverse Wave on
Stretched String

The speed of a mechanical wave is determined
by the restoring force setup in the medium when
it is disturbed and the inertial properties (mass
density) of the medium. The speed is expected to
be directly related to the former and inversely to
the latter. For waves on a string, the restoring
force is provided by the tension T in the string.
The inertial property will in this case be linear
mass density µ, which is mass m  of the string
divided by its length L. Using Newton’s Laws of
Motion, an exact formula for the wave speed on
a string can be derived, but this derivation is
outside the scope of this book. We shall,
therefore, use dimensional analysis. We already
know that dimensional analysis alone can never
yield the exact formula. The overall
dimensionless constant is always left
undetermined by dimensional analysis.

The dimension of µ is [ML–1] and that of T is
like force, namely [MLT–2]. We need to combine
these dimensions to get the dimension of speed
v [LT–1]. Simple inspection shows that the
quantity T/µ has the relevant dimension

[ ]

2

2 2
MLT

L T
ML

−

−
    =  

Thus if T and µ are assumed to be the only
relevant physical quantities,

v  = C 
T

µ
(14.13)

where C is the undetermined constant of
dimensional analysis. In the exact formula, it
turms out, C=1. The speed of transverse waves
on a stretched string is given by

v  = 
µ
T

  
(14.14)

Note the important point that the speed v
depends only on the properties of the medium T
and µ (T is a property of the stretched string

arising due to an external force). It does not
depend on wavelength or frequency of the wave
itself. In higher studies, you will come across
waves whose speed is not independent of
frequency of the wave. Of the two parameters λ
and ν the source of disturbance determines the
frequency of the wave generated. Given the
speed of the wave in the medium and the
frequency Eq. (14.12) then fixes the wavelength

vλ
ν

  = (14.15)

uuuuu Example 14.3 A steel wire 0.72 m long
has a mass of 5.0 ×10–3 kg. If the wire is
under a tension of 60 N, what is the speed
of transverse waves on the wire ?

Answer Mass per unit length of the wire,

m 72.0
kg 100.5 3−×

=µ

   = 6.9 ×10–3 kg m–1

Tension, T = 60 N
The speed of wave on the wire is given by

 
1

13
m  93

mkg 109.6

N 60 −
−−

=
×

== s
T

  v
µ   ⊳

14.4.2 Speed of a Longitudinal Wave
(Speed of Sound)

In a longitudinal wave, the constituents of the
medium oscillate forward and backward in the
direction of propagation of the wave. We have
already seen that the sound waves travel in the
form of compressions and rarefactions of small
volume elements of air.  The elastic property that
determines the stress under compressional
strain is the bulk modulus of the medium defined
by (see Chapter 8)

P
B  

V/V

∆
= −

∆ (14.16)

Here, the change in pressure ∆P produces a

volumetric strain 
V

V

∆
. B has the same dimension

as pressure and given in SI units in terms of
pascal (Pa). The inertial property relevant for the
propagation of wave is the mass density ρ, with
dimensions [ML–3]. Simple inspection reveals
that quantity B/ρ has the relevant dimension:
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2 2

2 2

3

ML T
L T

ML

− −

−

−

    =    
(14.17)

Thus, if B and ρ  are considered to be the only

relevant physical quantities,

v  = C 
B

ρ
(14.18)

where, as before, C is the undetermined constant
from dimensional analysis. The exact derivation
shows that C=1. Thus, the general formula for
longitudinal waves in a medium is:

v  = B

ρ
(14.19)

For a linear medium, like a solid bar, the
lateral expansion of the bar is negligible and we
may consider it to be only under longitudinal
strain. In that case, the relevant modulus of
elasticity is Young’s modulus, which has the
same dimension as the Bulk modulus.
Dimensional analysis for this case is the same
as before and yields a relation like Eq. (14.18),
with an undetermined C, which the exact
derivation shows to be unity. Thus, the speed of
longitudinal waves in a solid bar is given by

 v  = 
ρ
Y (14.20)

where Y is the Young’s modulus of the material
of the bar. Table 14.1 gives the speed of sound
in some media.

Table 14.1 Speed of Sound in some Media

   Liquids and solids generally have higher speed
of sound than gases. [Note for solids, the speed
being referred to is the speed of longitudinal
waves in the solid]. This happens because they
are much more difficult to compress than gases
and so have much higher values of bulk modulus.
Now, see Eq. (14.19). Solids and liquids have

higher mass densities ( ρ ) than gases. But the

corresponding increase in both the modulus (B)
of solids and liquids is much higher. This is the
reason why the sound waves travel faster in
solids and liquids.

We can estimate the speed of sound in a gas
in the ideal gas approximation. For an ideal gas,
the pressure P, volume V and temperature T are
related by (see Chapter 10).

PV = Nk
B
T (14.21)

where N is the number of molecules in volume
V, k

B
 is the Boltzmann constant and T the

temperature of the gas (in Kelvin). Therefore, for
an isothermal change it follows from Eq.(14.21)
that

V∆P + P∆V  = 0

or P
V/V

P
 =

∆
∆

−

Hence, substituting in Eq. (14.16), we have

B = P

Therefore, from Eq. (14.19) the speed of a
longitudinal wave in an ideal gas is given by,

v  = 
ρ
P (14.22)

This relation was first given by Newton and
is known as Newton’s formula.

uuuuu Example 14.4  Estimate the speed of
sound in air at standard temperature and
pressure. The mass of 1 mole of air is
29.0 ×10–3 kg.

Answer We know that 1 mole of any gas occupies
22.4 litres at STP. Therefore, density of air at
STP is:

 ρ
o
 = (mass of one mole of air)/ (volume of one

mole of air at STP)

3

3 3

29.0 10 kg

22.4 10 m
 

−

−

×
=

×

=  1.29 kg  m–3
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According to Newton’s formula for the speed
of sound in a medium, we get for the speed of
sound in air at STP,

 = 280 m s–1   (14.23)

⊳

The result shown in Eq.(14.23) is about 15%
smaller as compared to the experimental value
of 331 m s–1 as given in Table 14.1. Where
did we go wrong ? If we examine the basic
assumption made by Newton that the pressure
variations in a medium during propagation of
sound are isothermal, we find that this is not
correct. It was pointed out by Laplace that the
pressure variations in the propagation of sound
waves are so fast that there is little time for the
heat flow to maintain constant temperature.
These variations, therefore, are adiabatic and
not isothermal. For adiabatic processes the ideal
gas satisfies the relation (see Section 11.8),

PV γ  = constant

i.e. ∆(PV γ )  = 0

or P γ V γ –1 ∆V + V γ 
∆P = 0

where γ is the ratio of two specific heats,
C

p
/C

v
.

Thus, for an ideal gas the adiabatic bulk
modulus is given by,

B
ad

 = 
V/V

P
 
∆

∆
−

  =  γP

   The speed of sound is, therefore, from Eq.
(14.19), given by,

v = 
ρ

γ P (14.24)

This modification of Newton’s formula is referred
to as the Laplace correction. For air
γ = 7/5. Now using Eq. (14.24) to estimate the speed
of sound in air at STP, we get a value 331.3 m s–1,
which agrees with the measured speed.

14.5 THE PRINCIPLE OF SUPERPOSITION
OF WAVES

What happens when two wave pulses travelling

in opposite directions cross each other

(Fig. 14.9)? It turns out that wave pulses

continue to retain their identities after they have

crossed. However, during the time they overlap,

the wave pattern is different from either of the

pulses. Figure 14.9 shows the situation when

two pulses of equal and opposite shapes move

towards each other. When the pulses overlap,

the resultant displacement is the algebraic sum

of the displacement due to each pulse. This is

known as the principle of superposition of waves.

According to this principle, each pulse moves
as if others are not present. The constituents of
the medium, therefore, suffer displacments due
to both and since the displacements can be
positive and negative, the net displacement is
an algebraic sum of the two. Fig. 14.9 gives
graphs of the wave shape at different times. Note
the dramatic effect in the graph (c); the
displacements due to the two pulses have exactly
cancelled each other and there is zero
displacement throughout.
    To put the principle of superposition
mathematically, let y

1
 (x,t) and y

2
 (x,t) be the

displacements due to two wave disturbances in
the medium. If the waves arrive in a region
simultaneously, and therefore, overlap, the net
displacement y (x,t) is given by

y     (x, t) =  y
1
(x, t ) +  y

2
(x, t) (14.25)

If we have two or more waves moving in the
medium the resultant waveform is the sum of
wave functions of individual waves. That is, if
the wave functions of the moving waves are

Fig. 14.9 Two pulses having equal and opposite
displacements moving in opposite
directions. The overlapping pulses add up
to zero displacement in curve (c).
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y
1
 = f

1
(x–vt),

y
2
 = f

2
(x–vt),

..........
           ..........

           y
n
 = f

n
 (x–vt)

then the wave funct ion descr ib ing the
disturbance in the medium is

y = f
1
(x – vt)+ f

2
(x – vt)+  ...+ f

n
(x – vt)

   ( )
=1i

n
 f  x vt

i
= −∑ (14.26)

The principle of superposition is basic to the
phenomenon of interference.

For simplicity, consider two harmonic
travelling waves on a stretched string, both with
the same ω (angular frequency) and k (wave
number), and, therefore, the same wavelength
λ. Their wave speed will be identical. Let us
further assume that their amplitudes are equal
and they are both travelling in the positive
direction of x-axis. The waves only differ in their
initial phase. According to Eq. (14.2), the two
waves are described by the functions:

y
1
(x, t) = a sin (kx – ωt) (14.27)

and y
2
(x, t) =  a sin (kx – ωt + φ ) (14.28)

The net displacement is then, by the principle
of superposition, given by

y  (x, t ) = a sin (kx – ωt) + a sin (kx – ωt + φ )
(14.29)

( ) ( )
2sin cos

2 2

kx t kx t
a

ω ω φ φ − + − + 
=   

   
(14.30)

where we have used the familiar trignometric

identity for sin sinA B+ . We then have

( ), 2 cos sin
2 2

y x t a kx t
φ φ

ω = − + 
 

(14.31)

Eq. (14.31) is also a harmonic travelling wave in
the positive direction of x-axis, with the same
frequency and wavelength. However, its initial

phase angle is 
2

φ
. The significant thing is that

its amplitude is a function of the phase difference

φ between the constituent two waves:
A(φ)  =  2a cos ½φ (14.32)

For φ = 0, when the waves are in phase,

( ) ( ), 2 siny x t a kx tω= − (14.33)

i.e., the resultant wave has amplitude 2a, the

largest possible value for A. For φ π= , the

waves are completely, out of phase and the
resultant wave has zero displacement
everywhere at all times

y   (x, t )  = 0 (14.34)
Eq. (14.33) refers to the so-called constructive
interference of the two waves where the
amplitudes add up in the resultant wave. Eq.
(14.34) is the case of destructive intereference
where the amplitudes subtract out in the
resultant wave. Fig. 14.10 shows these two cases
of interference of waves arising from the
principle of superposition.

14.6 REFLECTION OF WAVES

So far we considered waves propagating in an
unbounded medium. What happens if a pulse
or a wave meets a boundary? If the boundary is
rigid, the pulse or wave gets reflected. The

Fig. 14.10 The resultant of two harmonic waves of
equal amplitude and wavelength
according to the principle of superposition.
The amplitude of the resultant wave
depends on the phase difference φ, which

is zero  for (a) and π for (b)
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If on the other hand, the boundary point is
not rigid but completely free to move (such as in
the case of a string tied to a freely moving ring
on a rod), the reflected pulse has the same phase
and amplitude (assuming no energy dissipation)
as the incident pulse. The net maximum
displacement at the boundary is then twice the
amplitude of each pulse. An example of non- rigid
boundary is the open end of an organ pipe.

To summarise, a travelling wave or pulse
suffers a phase change of π on reflection at a
rigid boundary and no phase change on
reflection at an open boundary. To put this
mathematically, let the incident travelling
wave be

( ) ( )2 , sin ω= −y x t a kx t

At a rigid boundary, the reflected wave is given
by

y
r
(x, t ) = a sin (kx – ωt + π ).

   = – a sin (kx – ωt ) (14.35)
At an open boundary, the reflected wave is given
by

y
r
(x, t ) = a sin (kx – ωt + 0).

   = a sin (kx – ωt) (14.36)

Clearly, at the rigid boundary, 2 0= + =ry y y

at all times.

14.6.1   Standing Waves and Normal Modes

We considered above reflection at one boundary.
But there are familiar situations (a string fixed
at either end or an air column in a pipe with
either end closed) in which reflection takes place
at two or more boundaries. In a string, for
example, a wave travelling in one direction will
get reflected at one end, which in turn will travel
and get reflected from the other end. This will
go on until there is a steady wave pattern set
up on the string. Such wave patterns are called
standing waves or stationary waves. To see this
mathematically, consider a wave travelling
along the positive direction of x-axis and a
reflected wave of the same amplitude and
wavelength in the negative direction of x-axis.
From Eqs. (14.2) and (14.4), with φ = 0, we get:

y
1
(x, t) = a sin (kx – ωt)

y
2
(x, t) = a sin (kx + ωt)

The resultant wave on the string is, according
to the principle of superposition:

y (x, t) =  y
1
(x, t) + y

2
(x, t )

phenomenon of echo is an example of reflection
by a rigid boundary. If the boundary is not
completely rigid or is an interface between two
different elastic media, the situation is some
what complicated. A part of the incident wave is
reflected and a part is transmitted into the
second medium. If a wave is incident obliquely
on the boundary between two different media
the transmitted wave is called the refracted
wave. The incident and refracted waves obey
Snell’s law of refraction, and the incident and
reflected waves obey the usual laws of
reflection.

Fig. 14.11 shows a pulse travelling along a
stretched string and being reflected by the
boundary. Assuming there is no absorption of
energy by the boundary, the reflected wave has
the same shape as the incident pulse but it
suffers a phase change of π or 1800 on reflection.
This is because the boundary is rigid and the
disturbance must have zero displacement at all
times at the boundary. By the principle of
superposition, this is possible only if the reflected
and incident waves differ by a phase of π, so that
the resultant displacement is zero. This
reasoning is based on boundary condition on a
rigid wall. We can arrive at the same conclusion
dynamically also. As the pulse arrives at the wall,
it exerts a force on the wall. By Newton’s Third
Law, the wall exerts an equal and opposite force
on the string generating a reflected pulse that
differs by a phase of π.

Fig. 14.11 Reflection of a pulse meeting a rigid
boundary.
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= a [sin (kx – ωt) + sin (kx + ωt)]

Using the familiar trignometric identity
Sin (A+B) + Sin (A–B) = 2 sin A cosB we get,

y (x, t) = 2a sin kx cos ωt (14.37)

Note the important difference in the wave
pattern described by Eq. (14.37) from that
described by Eq. (14.2) or Eq. (14.4). The terms
kx and ωt appear separately, not in the
combination kx - ωt. The amplitude of this wave
is 2a sin kx. Thus, in this wave pattern, the
amplitude varies from point-to-point, but each
element of the string oscillates with the same
angular frequency ω or time period. There is no
phase difference between oscillations of different
elements of the wave. The string as a whole
vibrates in phase with differing amplitudes at
different points. The wave pattern is neither
moving to the right nor to the left. Hence, they
are called standing or stationary waves. The
amplitude is fixed at a given location but, as
remarked earlier, it is different at different
locations. The points at which the amplitude is
zero (i.e., where there is no motion at all) are

nodes; the points at which the amplitude is the
largest are called antinodes. Fig. 14.12 shows
a stationary wave pattern resulting from
superposition of two travelling waves in
opposite directions.

The most significant feature of stationary
waves is that the boundary conditions constrain
the possible wavelengths or frequencies of
vibration of the system. The system cannot
oscillate with any arbitrary frequency (contrast
this with a harmonic travelling wave), but is
characterised by a set of natural frequencies or
normal modes of oscillation. Let us determine
these normal modes for a stretched string fixed
at both ends.

First, from Eq. (14.37), the positions of nodes
(where the amplitude is zero) are given by
sin kx = 0 .
which implies

kx = nπ;   n = 0, 1, 2, 3, ...

Since, k = 2π/λ , we get

x = 
λ

2

n
 ; n = 0, 1, 2, 3, ...        (14.38)

Fig. 14.12 Stationary waves arising from superposition of two harmonic waves travelling in opposite directions.
Note that the positions of zero displacement (nodes) remain fixed at all times.
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Clearly, the distance between any two

successive nodes is 
λ
2 . 

In the same way, the

positions of antinodes (where the amplitude is
the largest) are given by the largest value of sin
kx :

sin k x
 
= 1

which implies

kx = (n + ½) π ; n = 0, 1, 2, 3, ...

With k = 2π/λ, we get

 x = (n + ½)
2

λ
 ; n = 0, 1, 2, 3, ...                (14.39)

Again the distance between any two consecutive

antinodes is 
2

λ
. Eq. (14.38) can be applied to

the case of a stretched string of
length L fixed at both ends. Taking
one end to be at x = 0, the boundary
conditions are that x = 0 and x = L
are positions of nodes. The x = 0
condition is already satisfied. The
x = L node condition requires that
the length L is related to λ by

L = n 
2

λ
;     n = 1, 2, 3, ...        (14.40)

Thus, the possible wavelengths of
stationary waves are constrained
by the relation

λ  = 
2L

n
;    n = 1, 2, 3, …   (14.41)

with corresponding frequencies

v =  
2L

nv
, for  n = 1, 2, 3,   (14.42)

We have thus obtained the natural
frequencies - the normal modes of
oscillation of the system. The lowest
possible natural frequency of a
system is called its fundamental
mode or the first harmonic. For the
stretched string fixed at either end

it is given by v = 
v

L2
, corresponding

to n = 1 of Eq. (14.42). Here v is the

speed of wave determined by the properties of
the medium. The n = 2 frequency is called the
second harmonic; n = 3 is the third harmonic
and so on. We can label the various harmonics by
the symbol ν

n
 ( n = 1, 2, ...).

Fig. 14.13 shows the first six harmonics of a
stretched string fixed at either end. A string
need not vibrate in one of these modes only.
Generally, the vibration of a string will be a
superposition of different modes; some modes
may be more strongly excited and some less.
Musical instruments like sitar or violin are
based on this principle. Where the string is
plucked or bowed, determines which modes are
more prominent than others.

Let us next consider normal modes of
oscillation of an air column with one end closed

Fig. 14.13  The first six harmonics of vibrations of a stretched
string fixed at both ends.
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and the other open. A glass tube partially filled
with water illustrates this system. The end in
contact with water is a node, while the open end
is an antinode. At the node the pressure
changes are the largest, while the displacement
is minimum (zero). At the open end - the
antinode, it is just the other way - least pressure
change and maximum amplitude of
displacement. Taking the end in contact with
water to be x = 0, the node condition (Eq. 14.38)
is already satisfied. If the other end x = L is an
antinode, Eq. (14.39) gives

L =   n +





1

2
 
2

λ
, for n = 0, 1, 2, 3, …

The possible wavelengths are then restricted by
the relation :

λ  = 
( )

2

1 2

L

n  + /
,  for n = 0, 1, 2, 3,... (14.43)

The normal modes – the natural frequencies –
of the system are

ν  =  n +





1

2 2

v

L
; n = 0, 1, 2, 3, ... (14.44)

The fundamental frequency corresponds to n = 0,

and is given by 
v

L4
 . The higher frequencies

are odd harmonics, i.e., odd multiples  of the

fundamental frequency : 3
v

L4
, 5

v

L4
, etc.

Fig. 14.14 shows the first six odd harmonics of
air column with one end closed and the other
open. For a pipe open at both ends, each end is
an antinode. It is then easily seen that an open
air column at both ends generates all harmonics
(See Fig. 14.15).

The systems above, strings and air columns,
can also undergo forced oscillations (Chapter
13). If the external frequency is close to one of
the natural frequencies, the system shows
resonance.

Normal modes of a circular membrane rigidly
clamped to the circumference as in a tabla are
determined by the boundary condition that no
point on the circumference of the membrane
vibrates. Estimation of the frequencies of normal

modes of this system is more complex. This
problem involves wave propagation in two
dimensions. However, the underlying physics is
the same.

uuuuu Example 14.5  A pipe, 30.0 cm long, is open
at both ends. Which harmonic mode of the
pipe resonates a 1.1 kHz source?  Will
resonance with the same source be
observed if one end of the pipe is closed ?
Take the speed of sound in air as
330 m s–1.

Answer  The first harmonic frequency is given
by

                ν
1
 = 

L

vv

2
  

1
=

λ      (open pipe)

where L is the length of the pipe. The frequency
of its nth harmonic is:

ν
n
 = 

L

nv

2
, for n = 1, 2, 3, ... (open pipe)

First few modes of an open pipe are shown in
Fig. 14.15.
For L = 30.0 cm, v = 330 m s–1,

ν
n
 = 

1 330 (m s )

0.6  (m)

−n
 = 550 n s–1

Clearly, a source of frequency 1.1 kHz will
resonate at v

2
, i.e. the second harmonic.

Fundamental
or third fifth

first harmonic harmonic harmonic
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while tuning their instruments with each other.
They go on tuning until their sensitive ears do
not detect any beats.

To see this mathematically, let us consider
two harmonic sound waves of nearly equal
angular frequency ω

1
 and ω

2
 and fix the location

to be x = 0 for convenience. Eq. (14.2) with a
suitable choice of phase (φ = π/2 for each) and,
assuming equal amplitudes, gives
 s

1
 = a 

 
cos ω

1
t   and  s

2
 = a 

 
cos ω

2
t         (14.45)

Here we have replaced the symbol y by s,
since we are referring to longitudinal not
transverse displacement. Let ω

1
 be the (slightly)

greater of the two frequencies. The resultant
displacement is, by the principle of
superposition,

s =  s
1
 + s

2
 = a (cos

 
ω

1 
t + cos ω

2 
t)

Using the familiar trignometric identity for
cos A + cosB, we get

( ) ( )1 2 1 2
 2 cos  cos

2 2

t t
a

ω ω ω ω  - +
= (14.46)

which may be written as :
s = [2 a  cos ω

b 
t ] cos ω

a
t (14.47)

If |ω
1 
– ω

2
| <<ω

1
, ω

2
, ω

a
 >> ω

b
, th

where

ω
b
 = ( )1 2

2

ω ω −  and  ω
a
 = ( )1 2

2

ω ω +

Now if we assume |ω
1 
– ω

2
| <<ω

1
, which means

ω
a
 >> ω

b
, we can interpret Eq. (14.47) as follows.

The resultant wave is oscillating with the average
angular frequency ω

a
; however its amplitude is

not constant in time, unlike a pure harmonic
wave. The amplitude is the largest when the
term cos ω

b 
t takes its limit +1 or –1. In other

words, the intensity of the resultant wave waxes
and wanes with a frequency which is 2ω

b
 = ω

1
 –

Fig. 14.14 Normal modes of an air column open at
one end and closed at the other end. Only
the odd harmonics are seen to be possible.

seventh ninth eleventh
harmonic harmonic harmonic

Now if one end of the pipe is closed (Fig. 14.15),
it follows from Eq. (14.15) that the fundamental
frequency is

ν
1
 =  

L

vv

4
  

1
=

λ  (pipe closed at one end)

and only the odd numbered harmonics are
present :

ν
3
 = 

3

4

v

L
,  ν

5
 = 

5

4

v

L
, and so on.

For L = 30 cm and v = 330 m s–1, the
fundamental frequency of the pipe closed at one
end is 275 Hz and the source frequency
corresponds to its fourth harmonic. Since this
harmonic is not a possible mode, no resonance
will be observed with the source, the moment
one end is closed. ⊳

14.7   BEATS

‘Beats’ is an interesting phenomenon arising
from interference of waves. When two harmonic
sound waves of close (but not equal) frequencies
are heard at the same time, we hear a sound of
similar frequency (the average of two close
frequencies), but we hear something else also.
We hear audibly distinct waxing and waning of
the intensity of the sound, with a frequency
equal to the difference in the two close
frequencies. Artists use this phenomenon often

Fig. 14.15 Standing waves in an open pipe, first four
harmonics are depicted.
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ω
2
. Since  ω = 2πν, the beat frequency ν

beat
, is

given by
ν

beat
 = ν

1
 – ν

2
(14.48)

Fig. 14.16 illustrates the phenomenon of
beats for two harmonic waves of frequencies 11
Hz and 9 Hz. The amplitude of the resultant wave

shows beats at a frequency of 2 Hz.

uuuuu Example 14.6  Two sitar strings A and B
playing the note ‘Dha’ are slightly out of
tune and produce beats of frequency 5 Hz.
The tension of the string B is slightly
increased and the beat frequency is found
to decrease to 3 Hz. What is the original
frequency of B if the frequency of A is
427 Hz ?

Answer Increase in the tension of a string
increases its frequency. If the original frequency
of B (ν

B
) were greater than that of A (ν

A 
), further

increase in ν
B
 should have resulted in an

increase in the beat frequency. But the beat
frequency is found to decrease. This shows that
ν

B
 < ν

A
. Since ν

A
 – ν

B
 = 5 Hz, and ν

A
 = 427 Hz, we

get ν
B
 = 422 Hz. ⊳

Musical Pillars
Temples often have some pillars portraying
human figures playing musical instru-
ments, but seldom do these pillars
themselves produce music. At the
Nellaiappar temple in Tamil Nadu, gentle
taps on a cluster of pillars carved out of a
single piece of rock produce the basic notes
of Indian classical music, viz. Sa, Re, Ga,
Ma, Pa, Dha, Ni, Sa. Vibrations of these
pillars depend on elasticity of the stone used,
its density and shape.

Musical pillars are categorised into three
types: The first is called the Shruti Pillar,
as it can produce the basic notes —  the
“swaras”. The second type is the Gana
Thoongal, which generates the basic tunes
that make up the “ragas”. The third variety
is the Laya Thoongal pillars that produce
“taal” (beats) when tapped. The pillars at the
Nellaiappar temple are a combination of the
Shruti and Laya types.

Archaeologists date the Nelliappar
temple to the 7th century and claim it was
built by successive rulers of the Pandyan
dynasty.

The musical pillars of Nelliappar and
several other temples in southern India like
those at Hampi (picture), Kanyakumari, and
Thiruvananthapuram are unique to the
country and have no parallel in any other
part of the world.

Fig. 14.16 Superposition of two harmonic waves, one
of frequency 11 Hz (a), and the other of
frequency 9Hz (b), giving rise to beats of
frequency 2 Hz, as shown in (c).
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SUMMARY

1. Mechanical waves can exist in material media and are governed by Newton’s Laws.

2. Transverse waves are waves in which the particles of the medium oscillate perpendicular
to the direction of wave propagation.

3. Longitudinal waves are waves in which the particles of the medium oscillate along the
direction of wave propagation.

4. Progressive wave is a wave that moves from one point of medium to another.

5. The displacement in a sinusoidal wave propagating in the positive x direction is given
by

y (x, t) = a sin (kx – ωt + φ)

where a is the amplitude of the wave, k is the angular wave number, ω is the angular
frequency, (kx – ωt + φ) is the phase, and φ is the phase constant or phase angle.

6. Wavelength λ of a progressive wave is the distance between two consecutive points of
the same phase at a given time. In a stationary wave, it is twice the distance between
two  consecutive nodes or antinodes.

7. Period T of oscillation of a wave is defined as the time any element of the medium
takes to move through one complete oscillation. It is related to the angular frequency ω
through the relation

T =
2π

ω

8. Frequency v of a wave is defined as 1/T and is related to angular frequency by

2

ων =
π

9. Speed of a progressive wave is given by 
k T

v
ω λ λν= = =

10.  The speed of a transverse wave on a stretched string is set by the properties of the
string. The speed on a string with tension T and linear mass density µ is

v =
T

µ

11. Sound waves are longitudinal mechanical waves that can travel through solids, liquids,
or gases. The speed v of sound wave in a fluid having bulk modulus B and density ρ is

v
B

=
ρ

The speed of longitudinal waves in a metallic bar is

v
Y

=
ρ

For  gases,  since B = γP, the speed of sound is

v
P

=
γ

ρ
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12. When two or more waves traverse simultaneously in the same medium, the

displacement of any element of the medium is the algebraic sum of the displacements
due to each wave. This is known as the principle of superposition of waves

1

(   )
n

i

i

y f x vt
=

= −∑
13. Two sinusoidal waves on the same string exhibit interference, adding or cancelling

according to the principle of superposition. If the two are travelling in the same
direction and have the same amplitude a and frequency but differ in phase by a phase
constant φ, the result is a single wave with the same frequency ω :

y     (x, t)  = 2
1

2

1

2
a kxcos sinφ ω φ







− +





 t 

If φ = 0 or an integral multiple of 2π, the waves are exactly in phase and the interference
is constructive; if φ = π, they are exactly out of phase and the interference is destructive.

14. A travelling wave, at a rigid boundary or a closed end, is reflected with a phase
reversal but the reflection at an open boundary takes place without any phase change.

For an incident wave

                           y
i 
(x, t) = a sin (kx – ωt )

the reflected wave at a rigid boundary is

                         y
r 
(x, t) = – a sin (kx + ωt )

For reflection at an open boundary

                       y
r 
(x,t ) = a sin (kx + ωt)

15. The interference of two identical waves moving in opposite directions produces standing
waves. For a string with fixed ends, the standing wave is given by

y (x, t) = [2a sin kx ] cos ωt

Standing waves are characterised by fixed locations of zero displacement called nodes
and fixed locations of maximum displacements called antinodes. The separation
between two consecutive nodes or antinodes is λ/2.

A stretched string of length L fixed at both the ends vibrates with frequencies given by

v  ,
2

=
n v

L
     n = 1, 2, 3, ...

The set of frequencies given by the above relation are called the normal modes of
oscillation of the system. The oscillation mode with lowest frequency is called the
fundamental mode or the first harmonic. The second harmonic is the oscillation mode
with n = 2 and so on.

A pipe of length L with one end closed and other end open (such as air columns)
vibrates with frequencies given by

v ( )n ½  
2L

v
= + ,       n = 0, 1, 2, 3, ...

The set of frequencies represented by the above relation are the normal modes of
oscillation of such a system. The lowest frequency given by v/4L is the fundamental
mode or the first harmonic.

16. A string of length L fixed at both ends or an air column closed at one end and open
at the other end or open at both the ends, vibrates with certain frequencies called
their normal modes. Each of these frequencies is a resonant frequency of the system.

17. Beats arise when two waves having slightly different frequencies, ν
1
 and ν

2
 and

comparable amplitudes, are superposed. The beat frequency is

ν
beat

 = ν
1
 ~ ν

2
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POINTS TO PONDER

1. A wave is not motion of matter as a whole in a medium.  A wind is different from the
sound wave in air.  The former involves motion of air from one place to the other.  The
latter involves compressions and rarefactions of layers of air.

2. In a wave, energy and not the matter is transferred from one point to the other.

3. In a mechanical wave, energy transfer takes place because of the coupling through

elastic forces between neighbouring oscillating parts of the medium.

4. Transverse waves can propagate only in medium with shear modulus of elasticity,
Longitudinal waves need bulk modulus of elasticity and are therefore, possible in all
media, solids, liquids and gases.

5. In a harmonic progressive wave of a given frequency, all particles have the same
amplitude but different phases at a given instant of time.  In a stationary wave, all
particles between two nodes have the same phase at a given instant but have different
amplitudes.

6. Relative to an observer at rest in a medium the speed of a mechanical wave in that
medium (v) depends only on elastic and other properties (such as mass density) of

the medium. It does not depend on the velocity of the source.

EXERCISES

14.1 A string of mass 2.50 kg is under a tension of 200 N. The length of the stretched

string is 20.0 m. If the transverse jerk is struck at one end of the string, how long

does the disturbance take to reach the other end?

14.2 A stone dropped from the top of a tower of height 300 m splashes into the water of

a pond near the base of the tower. When is the splash heard at the top given that

the speed of sound in air is 340 m s–1 ? (g = 9.8 m s–2)

14.3 A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the

tension in the wire so that speed of a transverse wave on the wire equals the speed

of sound in dry air at 20 °C = 343 m s–1.

14.4 Use the formula v  
P

=
γ

ρ
to explain why the speed of sound in air

(a) is independent of pressure,

(b) increases with temperature,

(c) increases with humidity.

2024-25



PHYSICS298

14.5 You have learnt that a travelling wave in one dimension is represented by a function

y = f (x, t) where x and t must appear in the combination x – v t or x + v t, i.e.

y = f (x ± v t). Is the converse true? Examine if the following functions for y can

possibly represent a travelling wave :

(a) (x – vt )2

(b) log [(x + vt)/x
0
]

(c) 1/(x + vt)

14.6 A bat emits ultrasonic sound of frequency 1000 kHz in air. If the sound meets a

water surface, what is the wavelength of (a) the reflected sound, (b) the transmitted

sound? Speed of sound in air is 340 m s –1 and in water 1486 m s–1.

14.7 A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the

wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1 ? The

operating frequency of the scanner is 4.2 MHz.

14.8 A transverse harmonic wave on a string is described by

                    y(x, t) = 3.0 sin (36  t + 0.018 x + π/4)

where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave ?

If it is travelling, what are the speed and direction of its propagation ?

(b) What are its amplitude and frequency ?

(c) What is the initial phase at the origin ?

(d) What is the least distance between two successive crests in the wave ?

14.9 For the wave described in Exercise 14.8, plot the displacement (y) versus (t) graphs

for x = 0, 2 and 4 cm. What are the shapes of these graphs? In which aspects does

the oscillatory motion in travelling wave differ from one point to another: amplitude,

frequency or phase ?

14.10   For the travelling harmonic wave

y(x, t) = 2.0 cos 2π (10t – 0.0080 x + 0.35)

where x and y are in cm and t in s. Calculate the phase difference between oscillatory
motion of two points separated by a distance of

(a) 4 m,

(b) 0.5 m,

(c) λ/2,

(d) 3λ/4

14.11 The transverse displacement of a string (clamped at its both ends) is given by

y(x, t) = 0.06 sin 
2

3

π
x





  cos (120 πt)

where x and y are in m and t in s. The length of the string is 1.5 m and its mass is
3.0 ×10–2 kg.

Answer the following :

(a) Does the function represent a travelling wave or a stationary wave?

(b) Interpret the wave as a superposition of two waves travelling in opposite
directions. What is the wavelength, frequency, and speed of each wave ?
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(c) Determine the tension in the string.

14.12 (i) For the wave on a string described in Exercise 15.11, do all the points on the

string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain

your answers. (ii) What is the amplitude of a point 0.375 m away from one end?

14.13 Given below are some functions of x and t to represent the displacement (transverse

or longitudinal) of an elastic wave. State which of these represent (i) a travelling

wave, (ii) a stationary wave or (iii) none at all:

(a) y = 2 cos (3x) sin (10t)

(b) y x  vt  = −2

(c) y = 3 sin (5x – 0.5t) + 4 cos (5x – 0.5t)

(d) y = cos x sin t + cos 2x sin 2t

14.14 A wire stretched between two rigid supports vibrates in its fundamental mode with

a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2  kg and its linear mass density

is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and

(b) the tension in the string?

14.15 A metre-long tube open at one end, with a movable piston at the other end, shows

resonance with a fixed frequency source  (a tuning fork of frequency 340 Hz) when

the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the

temperature of the experiment. The edge effects may be neglected.

14.16 A steel rod 100 cm long is clamped at its middle. The fundamental frequency of

longitudinal vibrations of the rod are given to be 2.53 kHz. What is the speed of

sound in steel?

14.17 A pipe 20 cm long is closed at one end. Which harmonic mode of the pipe is

resonantly excited by a 430 Hz source ? Will the same source be in resonance with

the pipe if both ends are open? (speed of sound in air is 340 m s–1).

14.18 Two sitar strings A and B playing the note ‘Ga’ are slightly out of tune and produce

beats of frequency 6 Hz. The tension in the string A is slightly reduced and the

beat  frequency is found to reduce to 3 Hz. If the original frequency of A is 324 Hz,

what is the frequency of B?

14.19 Explain why (or how):

(a) in a sound wave, a displacement node is a pressure antinode and vice versa,

(b) bats can ascertain distances, directions, nature, and sizes of the obstacles

without any “eyes”,

(c) a violin note and sitar note may have the same frequency, yet we can

distinguish between the two notes,

(d) solids can support both longitudinal and transverse waves, but only

longitudinal waves can propagate in gases, and

(e) the shape of a pulse gets distorted during propagation in a dispersive medium.
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